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We suggest a quantum stabilization method for the SU(2) or-model, based on the 
constant-cutoff limit of the cutoff quantization method developed by Balakrishna 
et al., which avoids the difficulties with the usual soliton boundary conditions 
pointed out by lwasaki and Ohyama. We investigate the baryon number B = I 
sector of the model and show that after the collective coordinate quantization it 
admits a stable soliton solution which depends on a single dimensional arbitrary 
constant. We then derive the results for anharmonic corrections to the hyperon 
energy in the bound-state approach to the SU(3)-soliton model for the hyperons, 
with SU(3)-symmetry breaking. Thus we show that the anharmonic corrections 
give, as in the case of the complete Skyrme model, negative contributions to the 
hyperon energies and that they are of the same order of magnitude as those 
obtained using the complete Skyrme model for bound heavy-flavor two-meson 
systems in the case of cascade hyperons. 

1. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons  can be treated as 
solitons of  a non l inear  chiral theory. The original  Lagrangian of the chiral 

SU(2) cr-modei is 

= - ~  Tr OgU O~U + (1.1) 

where 

2 u = + i,r. (1.2) 

is a unitary operator ( U U  § = 1) and F~ is the pion-decay constant.  In (1.2) 

e = or(r) is a scalar meson  field and ~ = ~ ( r )  is the pion isotriplet. 
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The classical stability of the soliton solution to the chiral (r-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1): 

1 
,~Sk -- 32e 2 Tr[U + O~U, U + 0vU] 2 (1.3) 

with a dimensionless parameter e and where [A, B] = AB - BA. It was 
shown by several authors [see Adkins et al. (1983), Witten (1979, 1983a,b), 
and, for extensive lists of additional references, Holzwarth and Schwesinger 
(1986) and Nyman and Riska (1990)] that, after collective quantization using 
the spherically symmetric ansatz 

U0(r) = exp[i'r, r0 F(r)], r0 = r/r (1.4) 

the chiral model with both (1.1) and (1.3) included gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian as a sum of (1.l) and (1.3) 
from a more fundamental theory like QCD. On the other hand, it is not 
easy to generate a term like (1.3) and give a clear physical meaning to the 
dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated therefore the possibility to 
build a stable single-baryon (n = 1) quantum state in the simple chiral theory 
with the Skyrme stabilizing term (1.3) omitted. They showed that the chiral 

I t t  angle F(r) is in fact a function of a dimensionless variable s = ~-X (0)r, where 
• is an arbitrary dimensional parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear tr-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
U0(r) is given by (1.4), MV obtained the total energy of the nonlinear tr- 
model soliton in the form 

"rr 1 1 [• 3 j ( j  + 1) (1.5) 
E = -~ F 2 ~ a + 2 ('ul4)F2b 

where 

a= /0 |  (1.6) 

Io ~ ds --~-64 sZ sin2(l ~ )  (1.7) b 

and ~(s) is defined by 

F(r) = (s) = -n~r + �88 (1.8) 
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The stable minimum of the function (1.5) with respect to the arbitrary dimen- 
sional scale parameter • is 

E = 4  3 [~  (4)2 a3 "b -]1/4 F~ J(J + 1)J (1.9) 

Despite the nonexistence of the stable classical soliton solution to the 
nonlinear or-model, it is possible, after the collective coordinate quantization, 
to build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= -n~r, F(oo) = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyama (1989), the quantum 
stabilization method in the form proposed by MW is not correct since in the 
simple or-model the conditions F(O) = -n'rr  and F(oo) = 0 cannot be satisfied 
simultaneously. In other words, if the condition F(0) = - 'rr is satisfied, 
Iwasaki and Ohyama obtained numerically F(oo) --) -~r/2, and the chiral 
phase F = F(r) with correct boundary conditions does not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(O) = -n'tr and F(oo) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = l/r into the differential equation for the chiral angle 
F = F(r), we obtain 

d2F 1 
dy~ y2 sin 2F (1.10) 

There are two kinds of asymptotic solutions to equation (l.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~- 2F. These 
solutions are 

m'lT F(y) = --~ + cy 2, rn = even integer (I. 11) 

F(y) = --~ + v / ~  cos ln(cy) + ct , m = odd integer (1.12) 

where c is an arbitrary constant and ot is a constant to be chosen appropriately. 
When F(0) = -n'rr, we want to know which of these two solutions is 
approached by F(y) when y ~ 0 (r ---) oo). In order to answer that question 
we multiply (1.10) by y2F'(y), integrate with respect to y from y to 0% and 
use F(0) = -n'rr. Thus we get 

y2F'(y) + 2y[F'(y)]Zdy = 1 - cos[2F(y)] (1.13) 
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Since the left-hand side of (1.13) is always positive, the value of F(y) is 
always limited to the interval n'rr - 7r < F(y) < n'rr + ~. Taking the limit 
y --4 0, we find that (1.13) is reduced to 

f f  2y[F'(y)] 2 dy = I - ( - 1 )  m (1.14) 

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= -n'rr approaches (1.12) and we have F(~) 4= 0. The behavior of the 
solution (1.I 1) in the asymptotic region y ---> oo (r ~ 0) is investigated by 
multiplying (I.10) by F'(y), integrating from 0 to y, and using (1.11). The 
result is 

[F,(y)] 2 _ 2 sin2F(y) fi ' 2 sinZF(y) 
y2 + y3 dy (1.15) 

From (1.15) we see that F'(y) --) const as y --) oo, which means that F(r) ---- 
l/r for r --~ 0. This solution has a singularity at the origin and cannot satisfy 
the usual boundary condition F(0) = - n ~ .  

In Dalarsson (1991a,b, 1992), I suggested a method to resolve this 
difficulty by introducing a radial modification phase q~ -- q~(r) in the ansatz 
(1.4) as follows 

U(r) -- exp[i't'roF(r) + iq0(r)], r0 = r/r (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral ~-model. 

In the present paper we use the constant-cutoff limit of the cutoff quanti- 
zation method developed by Balakrishna et al. (1991; see also Jain et al., 
1989) to construct a stable chiral quantum soliton within the original chiral 
tr-model. Then we apply this method to derive the results for anharmonic 
corrections to the hyperon energy in the bound-state approach to the SU(3)- 
soliton model for the hyperons, with SU(3)-symmetry breaking. Thus we 
show that the anharmonic corrections give, as in the case of the complete 
Skyrme model, negative contributions to the hyperon energies and that they 
are of the same order of magnitude as those obtained using the complete 
Skyrme model for bound heavy-flavor two-meson systems in the case of 
cascade hyperons. 

The reason why the cutoff approach to the problem of chiral quantum 
solitons works is connected to the fact that the solution F = F(r) which 
satisfies the boundary condition F(~) = 0 is singular at r -- 0. From the 
physical point of view the chiral quantum model is not applicable to the 
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region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 

However, as argued in Balakrishna et al. (1991), when a cutoff e is 
introduced, then the boundary conditions F(e) = -n'rr and F(oo) = 0 can be 
satisfied. Balakrishna et al. (1991) discussed an interesting analogy with the 
damped pendulum, showing clearly that as long as ~ > 0, there is a chiral 
phase F = F(r) satisfying the above boundary conditions. The asymptotic 
forms of  such a solution are given by equation (2.2) in Balakrishna et al. 
(1991). From these asymptotic solutions we immediately see that for r ---> 0 
the chiral phase diverges at the lower limit. 

Different applications of the constant-cutoff approach have been dis- 
cussed in Dalarsson (1993, 1995a-c). 

2. C O N S T A N T - C U T O F F  STABILIZATION 

Substituting (1.4) into (1.1), we obtain for the static energy of  the 
chiral baryon 

] Eo = ~ F~ ~,) dr L r 2 ~ r r ]  -F 2 sin2F (2.1) 

In (2.1) we avoid the singularity of the profile function F = F(r) at the origin 
by introducing the cutoff e(t) at the lower boundary of the space interval r 
E [0, oo], i.e., by working with the interval r E [r oo]. The cutoff itself is 
introduced, following Balakrishna et al. (1991), as a dynamic time-depen- 
dent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

Zr \ ar] sinZF (2.2) 

with the boundary conditions F(e) = - ~  and F(~) = 0, such that the correct 
soliton number is obtained. The profile function F = F[r; e(t)] now depends 
implicitly on time t through e(t). Thus in the nonlinear ~-model Lagrangian 

L:F f 
16J Tr(0r Or +) d3r (2.3) 

we use the ans~tze 

U(r, t) = A(t)Uo(r, t)A§ 

U§ t) = A(t)U~(r, t)A§ 

(2.4) 
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where 

U0(r, t) = exp{i't'roF[r, e(t)]} (2.5) 

where 

~ 2 

2"rr l "~ 2~r f 2[dF~ 2 b=--~--F2~_, sin2Fy2dy, c = - - ~ - r z j ,  y ~ y ) y  dy (2.8) 

with x(t) = [ ~ ( t ) ]  3t2 and y = riG. On the other hand, the static energy functional 
(2.1) can be rewritten as 

"tr f i ~ [ y 2 ( d F ~ 2 + 2 s i n 2 F ] d y  (2.9) E 0 = a x  2/3, a =  ~-F2~ L \~YY] 

Thus the total Lagrangian of  the rotating soliton is given by 

L = c~ 2 - ax 2~3 + 2bx2a~a ~ (2.10) 

where Tr(0oA 0oA § = 2a~a ~ and ot~ (v = 0, 1, 2, 3) are the collective 
coordinates defined as in (Bhaduri, 1988). In the limit of  a time-independent 
cutoff (.~ --> 0) we can write 

OL a~ ax213 2 - ~  H = ~ - L = + 2bx26t,6t ~ = ax 2t3 + J(J + 1) 

(2.11) 

where (j2) = j ( j  + l) is the eigenvalue of  the square of  the soliton angular 
momentum. A minimum of(2.11) with respect to the parameter x is reached at 

x = J(J + 1) ~ J(J + l ) J  
(2.12) 

The energy obtained by substituting (2.12) into (2.11) is given by 

The static part of  the Lagrangian (2.3), i.e., 

L = ~ T r (VU.VU § d3r = - E o  (2.6) 

is equal to minus the energy Eo given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = ~ Tr(0oU OoU § d3r = bx 2 Tr[0oA OoA § + c[~(t)] 2 (2.7) 
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4[ a 1 '' E = -~ ~ J(J  + 1) (2.13) 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a --> �88 
~rF~a and b --> �88 and introduce f~ = 2-312F~r. However in the present 
approach, as shown in Balakrishna et al. (1991), there is a profile function 
F = F(y )  with proper soliton boundary conditions F(I) = - ~  and F(oo) = 
0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown in Balak- 
rishna et al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 2, and c = 1.46 
GeV 2 for F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical value 
of 939 MeV. However, if we choose the pion-decay constant equal to F~ = 
150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving exact 
agreement with the empirical nucleon mass. 

Finally it is of interest to know how large the constant cutoffs are for 
the above values of the pion-decay constant in order to check if they are 
in the physically acceptable ballpark. Using (2.12), it is easily shown that 
for the nucleons (J = 1/2) the cutoffs are equal to 

f0 .22 fm for F.~ = 186 MeV 
(2.14) 

= [0.27 fm for F~ = 150 MeV 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
a size of the quark-dominated bag in the center of the nucleon. Thus we find 
that the cutoffs are of reasonable physical size. Since the cutoff is proportional 
to F~ I, we see that the pion-decay constant must be less than 57 MeV in 
order to obtain a cutoff which exceeds the size of the nucleon. Such values 
of pion-decay constant are not relevant to any physical phenomena. 

3. THE SU(3)-EXTENDED CONSTANT-CUTOFF M O D E L  

3.1. The Effective Interaction 

The Lagrangian density of the bound-state model of hyperons is, with 
the Skyrme stabilizing term omitted, given by (Dalarsson, 1993, 1991a-c; 
Callan and Klebanov, 1985; Callan et al., 1988; Pari et al., 1991) 
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~e = -i- ~ Tr a~U O~U § + 
2 2 F~m~ + 2F2m 2 

Tr(U + U § - 2) 
48 

2 2 F 2 m  2 F ~m~ - + 
24 

F ~  - F 2 

Tr[v/3 hs(U + U+)] 

48 
- -  Tr[(1  - ~ hs)(U O~,U § O~U + U § O.U O~U§ ( 3 . 1 )  

where m~, and m are pion and heavy-flavor meson (K, D, or B) masses, 
respectively, and F is the heavy-flavor meson (K, D, or B) decay constant 
with the empirical ratios to the pion-decay constant FK/F= ~ 1.23, Fo/F= 

2.4, and Fs/F= ~ 2.8. 
The first term in (3.1) is the usual or-model Lagrangian, given by (1.1), 

while the remaining three terms are all chiral- and flavor-symmetry-breaking 
terms present in the mesonic sector of the model. All flavor-symmetry- 
breaking terms in the effective Lagrangian (3.1) also break the chiral symme- 
try j ust as quark-mass terms do in the underlying QCD Lagrangian. In addition 
to the action obtained using the Lagrangian (3.1), the Wess-Zumino action 
in the form 

S w z -  240Ir 2 dSx e~Qav 

• Tr[(U + a~U)(U + O~U)(U + aQU)(U + OI3U)(U + a~U)] (3.2) 

must be included into the total action of the system, where Arc is the number 
of colors in the underlying QCD. The Wess-Zumino action defines the 
topological properties of the model important for the quantization of the 
solitons. In the SU(2) case the Wess-Zumino action vanishes identically and 
therefore was not present in the discussions of Sections 1 and 2. 

In the present approach the meson-soliton field is written in the form 

U= ~ Ur ~ (3.3) 

where U~, is a SU(3) extension of the usual SU(2) skyrmion field used to 
describe the nucleon spectrum and UK is the field describing the heavy- 
flavor mesons 

U ~ =  [O~ ~],  Ur =e x p{  i23n _ff.~_ [O§ K]}  (3.4) 

In (3.4) u~ is the usual SU(2)-skyrmion field given by (1.4). The two- 
dimensional vector K in (3.5) is the heavy-flavor meson doublet 
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E ~176 K =  K ~ ' D- ' or B0 (3.5) 

K + = [K- K~ [D O D+I, or [B- ~0] (3.6) 

We now substitute (3.3), with U,, and UK defined by (3.4), into the total 
action of the kaon-soliton system and expand Utc to fourth order in the 
heavy-flavor-meson fields (3.5) and (3.6), to obtain 

, ~  = ~ ( 0 )  ..{_ ,~(2) ..~ ,~(4) (3.7) 

where 

~(o) = 2F__x Tr O~u~ a~u~ + 
16 

(3.8) 

is the usual Lagrangian density of the SU(2) soliton. Because of the form of 
the Lagrangian (3.1) only the terms of even order in the heavy-flavor-meson 
field K appear in (3.7) and the second-order term is given by 

cos F (1 - cos F) + 
r 2 

- m2K+K + " ~  B~,[K +Dr - (Dr 

"1 
1 - cos F / 

"27 T ' L J K  

(3.9) 

where B~ is the anomalous baryon current of the soliton 

1 
B~ - 24,tr2 %~,,1~ Tr[(U+a~U)(U+a"U)( U+a~U)] (3.1o) 

the time component of which is given by 

sin2F dF 
Bo = 2,rr2r 2 dr (3.11) 

and D" is defined by 

D ~ = a" + �89 '/z a~(U~) 1/2 + (U.~) '/2 O~(U+) '12] (3.12) 

The mode decomposition of the heavy-flavor-meson field gives the 
following wave equation for the bound meson: 
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where 

V2K(r) + [vo(r) - 2 1 -  c~ F ] I . L  K(r) - m2K(r) 

+ 2tok(r)K(r) + toZK(r) = 0 (3.13) 

Vo = -~ \ d r }  r 2 (3.14) 

Arc sin2F dF 
h(r) = 2.tr2F 2 r2 d---r (3.15) 

As argued in Dalarsson (1993, 1995a-c) and Bj~mberg et al. (1995), the 
ground-state solution to (3.13) is a P-state and it is described by a wave 
function of the type 

k(r) 
K(r) = A - ~  "t 'r0• (3.16) 

where k(r) is the radial wave function and A is the rotation operator which 
transforms the meson isospin operator into an effective spin operator (Pari 
et al., 1991). 

Using (3.16), we obtain the radial wave equation for the lowest bound- 
state wave function u0 = rkp(r) in the form 

d2u0 
dr 2 vefr(r)uo + [to2 _ m 2 + 2toh(r)]uo = 0 (3.17) 

where to is the lowest bound-state energy, the bound-state modes are normal- 
ized according to 

8~r dr r2[to + h(r)]k*(r)kp(r) = 1 (3.18) 

due to the form of the harmonic Lagrangian of the meson, and 

sin2F] 2 F 
veer(r) = - ~  L k dr ] r 2 j 7 ~ -~ 

The fourth-order Lagrangian is given by 

3F 2 r 2 4 (K+K) 2 - 4K+K O~K + c3~K 

(3.19) 

- 4(O~K+K)(K+O~K) + (K+O~K)(K+O~K) + (Or 
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I - cos F 
+ 2i 

r 

1 - cos F 
- 3i 

r 

3 K+ [ "~_  1 - co sF  
- - -  ' r +  

2 r 

§ F 
XK - - -~  "r + 

+ ~ F 2  { [  l - c ~  - -  

+ (O~K+K)(K+O~'K) 

i 1 - cos F + 
2 r 

i 1 - cos F + -  
2 r 

1 K +rsinF- x +  l - c o s F  
2 [ r r 

X K+[ "-~--~'r + 

K+K[VK +. (x x r o ) K -  K+(x x ro)'VK] 

[K+VK - VK+K] �9 K+(x x ro)K 

('r x ro) + "~r (x. ro)ro K 

4 (K+K)2 + K+K(O~K+)(Or 

K+K[VK +- (x x r o ) K -  K+(x x ro)" VK] 

[K+VK-  VK+K] �9 K+(x x ro)K 

dF 
(x x ro) + ~ r  

l - c O S F r  ( ' r x r ~  

sin F)('r" ro)ro] K 

sin ) , ro, r0] l 
(3.20) 

For a two-meson system with both mesons of the same flavor in the P- 
state (3.16), th.e mesons form a triplet state such that ' r .L = - 2  and tr t "tr 2 
= 1, and the Hamiltonian obtained from the anharmonic Lagrangian (3.20) 
gives the fairly simple end result for the anharmonic energy correction 

~ (( 5o)2 + 3 3 
AE(4 ) = 3~F 2 4  r 2 dr k4(r) m z + ~ ~ In k(r) - 8 \-~r/ 

+ ~ r  2 c o s F ( 1  + c o s F )  + ~  - to 2 + ~  Ink(r) 

+ 4 \dr}  + -~ cos F (1 + cos F) (3.21) 
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Introducing the dimensionless variable y = r/e as well as the dimen- 
sionless parameters la, = em and ~0 = eto, we obtain 

w2 + 2 in 1r - AE(4) - 3"rrF 2 8 \ d y /  

2y 2 c o s F ( l  + c o s F )  + ~  + ~  lnk(r) 

l ( d F I  2 2 }) 
+ ~ \ ~ y y ]  + ~ c o s F ( l  + c o s F )  (3.22) 

Using the solutions for F(y) and k(y) corresponding to the Lagrangian 
(3.1), we obtain the numerical values for the anharmonic corrections for 
cascade hyperons as two-meson states with both mesons in the ground P- 
state shown in Table I. The values obtained using the constant-cutoff approach 
are compared to those obtained using the complete Skyrme model in Bj6rnberg 
et al. (1995). Table I shows that there is a general qualitative agreement. 
However, the present approach offers much simpler algebra by avoiding 
the lengthy and painful calculations of the contributions from the Skyrme 
stabilizing term (1.3) or its equivalent given by equation (2.4) in BjOrnberg 
et al. (1995). It also eliminates the discussion about the alternative choices 
of the Skyrme stabilizing term (Pari et al., 1991; BjOrnberg et al., 1995). 
Bj6rnberg et al. (1995) showed that a choice other than (1.3) was necessary 
to make it possible to carry out the difficult calculations, but such a choice 
gives nonnegligible errors in the heavy-flavor-meson bound-state energies 
and it is concluded that the calculations with the original Skyrme stabilizing 
term (1.3) are more realistic. In our case the constant-cutoff approach gives 
fairly good results for the spectra and magnetic moments of strange hyperons, 
using the second-order Lagrangian (3.9) with the Skyrme stabilizing term 
omitted (Dalarsson, 1993, 1995a-c). The quartic corrections, as in the case 
of the complete Skyrme model (BjOrnberg et al., 1995), are shown to be 

Table I. Numerical Values of Quartic Contributions to the 
Energy of a Two-Meson System with Both Mesons in the 

Ground State for Different Meson Families (K, D, B) 

Meson family This work 

AE ~4) (MeV) 

Bj6rnberg et aL (1995) 

K - 3 7  - 2 6  
D -271  - 2 3 3  
B - 7 3 3  - 6 3 9  
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small, amounting to a few percent of the predicted masses of the cascade 
hyperons. They can therefore be considered as insignificant. As in BjSrnberg 
et al. (1995) we have neglected the quartic contribution of the Wess-Zumino 
action (3.2), which splits the energies of hyperons with opposite flavors and 
contributes a smaller amount to the effective interaction than the terms in 
(3.20), As argued in Bj/)rnberg et  al. (1995), the relative importance of the 
Wess-Zumino term is smaller in the case of the heavy-flavor hyperons. 

From the results for the bound-state energies obtained in the harmonic 
approximation for two-meson states, we see that the quartic corrections given 
in Table I amount to <9% of the total bound-state energies, corresponding 
to <2% of the predicted energies of the cascade particles. 

4. CONCLUSIONS 

We have shown the possibility of using the Skyrme model for the 
calculation of the anharmonic corrections to the hyperon energy in the bound- 
state approach to the SU(3)-soliton model for hyperons without the use of 
the Skyrme stabilizing term proportional to e -z, which makes the practical 
calculations very complicated and introduces the problem of the choice of 
the stabilizing term such that the harmonic and anharmonic contributions are 
calculated in a compatible and empirically correct way. 

For such a simple model with only one arbitrary dimensional constant 
F~, which is chosen equal to its empirical value F~ = 186 MeV, we show 
that the anharmonic corrections give, as in the case of the complete Skyrme 
model, negative contributions to the hyperon energies and that they are of 
the same order of magnitude as those obtained using the complete Skyrme 
model for bound heavy-flavor two-meson systems in the case of cascade 
hyperons. The numerical results are in general qualitative agreement with 
and of the same accuracy as those obtained using the complete Skyrme model 
(BjOrnberg et  al. ,  1995). 

Furthermore, the uncertainties in the choice of the form of the fourth- 
order stabilizing term as well as the convenient values of the parameters F~r 
and e in it are eliminated altogether. 
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